Math 10A with Professor Stankova
Quiz 9; Wednesday, 10/25/2017
Section \#107; Time: 11 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True False If rate at which the area A changes is proportional to the radius r, then there exist constants C, D such that $\frac{d A}{d t}=C r+D$.
2. True False In order to show that the integral $0 \leq \int_{1}^{\infty} \frac{1}{f(x)} d x$ converges, it suffices to find a function $g(x)$ such that $f(x) \geq g(x)$ on $[1, \infty)$ and show that $\int_{1}^{\infty} \frac{1}{g(x)} d x$ converges.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (4 points) Suppose that $\frac{d y}{d x}=\sec (y) \sin (x)$. Find a solution such that $y(0)=\pi$
(b) (3 points) Integrate $\int_{2}^{\infty} \frac{1}{(1-x)^{2}} d x$.
(c) (3 points) Does the integral $\int_{2}^{\infty} \frac{\sin ^{2}(x)}{(1-x)^{2}+e^{-x}} d x$ converge? Hint: Use the previous part.

